

Software-Based Building Airflow Analysis Tool for Enabling HVAC Energy Use Savings in Commercial Buildings**

Don Wroblewski, P.E. Boston University dew11@bu.edu

** A work in progress

OUTLINE

- Introduction
- Motivation
- Solution
- Proof of Concept
- Commercialization

ACKNOWLEDGMENTS

CO-CONSPIRATOR

Mike Gevelber Boston University

BU STUDENTS

- Paul Gallagher (MSME, 2013)
- R. Maranan, B. Lo, R, Cruz, M. Manion

COLLABORATORS

- Schneider Electric
- Schneider Electric
- BU Facility Management

FUNDING

 Massachusetts Clean Energy Center Catalyst Award 2011-2012

 Boston University Office of Technology Development Ignition Award, 2013

ACKNOWLEDGMENTS

TECHNICAL CONTACTS

Johnson Controls

Siemens Corporation

TRO JungBrannen Architects

Ingersol Rand: Trane

Price Engineering

BUSINESS/MARKET CONTACTS

CB Richard Ellis

Building Controls and Services

PECI

FirstFuel

BuildingIQ

KGS Systems

Kimberly-Clark Corporation

Sebesta Blomberg

State University of New York

GreenerU

Rockport Capital

BU ENERGY AUDIT COURSE

Building Energy Costs Scale with Airflow rate

Overall Building Air Changes per Hour vs. \$/sq.ft.

FAN ENERGY IS SIGNIFICANT PART OF \$/CFM

REDUCE MINIMUM VAV AIRFLOW SETTING

Minimum Air Flow typically set higher than code requirements*

Advanced VAV System Design Guide, 2003

REDUCE MINIMUM VAV AIRFLOW SETTING

- Blanc, 2007: VAV controllable down to 10% of design flow
- Arens, 2011: 24-30% HVAC energy savings by reducing minimum from 30 to 10% of max.
- Fisk, et al, 1997: Air Change Effectiveness is greater at lower flow rates

POTENTIAL FOR SAVINGS

SETTING MINIMUM AIR FLOWS: NEW APPROACH NEEDED

Manually Measuring Airflow

Labor Intensive
Time Consuming
Only first step in process
Ideally measure ACH

OBJECTIVE: Develop more cost effective way to measure ACH and reset minimums

OUR SYSTEM ID SOFTWARE APPROACH

Software approach enables fully integrated solutions

Room-by-room results aggregable for building level savings

Enables monitoring & diagnostics

SYSTEM IDENTIFICATION

1st ORDER SI MODEL

Fully Insulated Interior Room

$$C_A \frac{dT_A}{dt} = \dot{m}c_p (T_S - T_A) + Q_I$$
$$T_A = T_{A,SS} + \alpha e^{\lambda t}$$

1st Order Response

$$\tau = -\frac{1}{\lambda} = \frac{1}{ACH}$$
(Air Change Rate)

SECOND ORDER MODEL

Heat transfer: air walls

$$C_A \frac{dT_A}{dt} = \dot{m}c_p (T_S - T_A) + Q_I + \frac{T_W - T_A}{R_I}$$

$$C_W \frac{dT_W}{dt} = \frac{T_\infty - T_W}{R_O} + \frac{T_A - T_W}{R_I}$$

$$T_A = T_{A.SS} + \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$$

2nd Order Response with fast and slow time constants

$$\lambda_1, \lambda_2 = fn(ACH, C_A, C_W, R_O, R_I)$$

TRANSFER FUNCTION APPROACH: LAPLACE TRANSFORMS

Impose Step change in ACH

$$T_A = T_{A,SS} + \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$$

$$\overline{T}_A(s) \equiv \int_0^\infty e^{-st} T_A(t) dt$$

Transfer **Function**

$$\overline{T}_{A}(s) = \left[\frac{\left(T_{S} - \overline{T}_{0}\right)\left(s + \frac{1}{R_{I}C_{W}} + \frac{1}{R_{O}C_{W}}\right)}{(s - \lambda_{1})(s - \lambda_{2})} \frac{1}{s} \right] \Delta ACH$$

$$\lambda = -\frac{1}{2} \left(ACH + \frac{1}{R_I C_A} + \frac{1}{R_I C_W} + \frac{1}{R_O C_W} \right)$$
 Poles=1/time constant

$$\pm \frac{1}{2} \sqrt{\left(ACH + \frac{1}{R_I C_A} + \frac{1}{R_I C_W} + \frac{1}{R_O C_W}\right)^2 - 4\left(\frac{ACH}{R_I C_W} + \frac{ACH}{R_O C_W} + \frac{1}{R_I C_A R_O C_W}\right)}$$

FIRST ORDER ASYMPTOPTIC SOLUTION

$$C_W >> C_A$$

Fast Response

$$C_A \frac{dT_A}{dt} = \dot{m}c_p(T_S - T_A) + Q_I + \frac{T_W - T_A}{R_I}$$

$$\hat{\lambda}_1 = ACH + \frac{1}{R_I C_A}$$

Slow Response

$$0 = \dot{m}c_{p}(T_{S} - T_{A}) + Q_{I} + \frac{T_{W} - T_{A}}{R_{I}} \qquad C_{W} \frac{dT_{W}}{dt} = \frac{T_{\infty} - T_{W}}{R_{O}} + \frac{T_{A} - T_{W}}{R_{I}}$$

$$C_W \frac{dT_W}{dt} = \frac{T_\infty - T_W}{R_O} + \frac{T_A - T_W}{R_I}$$

$$\widehat{\lambda}_2 = \frac{1}{R_I C_W} \left[1 - \left\{ \left(ACH + \frac{1}{R_I C_A} \right) R_I C_A \right\}^{-1} \right] + \frac{1}{R_O C_W}$$

POLE SENSITIVITY TO ACH

Relative Sensitivity of λ_1 and λ_2

Relative sensitivity
of slow pole is
better than fast pole
for ACH<6

$$\begin{split} \lambda &= -\frac{1}{2} \left(ACH + \frac{1}{R_I C_A} + \frac{1}{R_I C_W} + \frac{1}{R_O C_W} \right) \\ &\pm \frac{1}{2} \sqrt{ \left(ACH + \frac{1}{R_I C_A} + \frac{1}{R_I C_W} + \frac{1}{R_O C_W} \right)^2 - 4 \left(\frac{ACH}{R_I C_W} + \frac{ACH}{R_O C_W} + \frac{1}{R_I C_A R_O C_W} \right)} \end{split}$$

SUMMARY OF SI APPROACH

Change VAV box flow rate (ACH)

Fit second order equation to temperature response (e.g., NLLS)

$$T_A = T_{A,SS} + \alpha_1 e^{-\lambda_1 t} + \alpha_2 e^{-\lambda_{21} t}$$

Extract ACH from fit constants

$$\lambda = -\frac{1}{2} \left(ACR + \frac{1}{R_I C_A} + \frac{1}{R_I C_W} + \frac{1}{R_O C_W} \right)$$

$$\pm \frac{1}{2} \sqrt{\left(ACR + \frac{1}{R_I C_A} + \frac{1}{R_I C_W} + \frac{1}{R_O C_W} \right)^2 - 4 \left(\frac{ACR}{R_I C_W} + \frac{ACR}{R_O C_W} + \frac{1}{R_I C_A R_O C_W} \right)}$$

CHALLENGE:

Design experimental protocol to facilitate ACH extraction with highest accuracy

EXPERIMENTS AT B.U.

Schneider Electric Continuum Workstation

TC-instrumented Room

- Occupied zone
- Dummy t'stat
- Wall
- Exhaust & Supply Vents
- · Primary air zone

EXPERIMENTS AT B.U.

Building	Room	Room Type	Floor Area	No. VAV	No. Tests
	Number		(ft²)	Boxes	Run
15 St Mary's Street	136	Office	150	1	50
15 St Mary's Street	150	Classroom	698	2	10
15 St Mary's Street	124	Computer Lab	1261	2	5
15 St Mary's Street	131	Office	176	1	10
Photonics	B11C	Laboratory	618	3	5
Photonics	B14	Office	158	1	20
Photonics	736A	Lab Office	100	1	10

RM 136 15 ST MARYS

VERIFICATION OF 2ND ORDER RESPONSE: EXPERIMENT

Rm 136, 15 St Mary's Street 9/27/12

VERIFICATION OF 2ND ORDER RESPONSE: CFD

CFD using OpenFoam

Model of Rm 136, 15 St Mary's Street

2nd Order Response also good fit for CFD

UNKNOWN PARAMETER EXPERIMENTS

Determined fit constants from test A

Used known parameters ACH, ΔACH , C_A , C_W , T_S to estimate unknown parameters R_I , R_O , Q_I , T_∞

Model w/ Full parameter set compared with test B

Initial Fast Response Well Predicted

SI TECHNIQUE: PARAMETER GROUPING

$$T_A = T_{A,SS} + \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$$

$$\lambda_1, \lambda_2 = fn(a, b, c, d, T_{A,SS}, T_{A,0})$$

$$\alpha_1, \alpha_2 = fn(\lambda_1, \lambda_2, a, c, T_S, T_{A,0})$$

$$a = \frac{1}{R_I C_W} + \frac{1}{R_O C_W} \qquad b = ACH \qquad c = \Delta ACH \qquad d = \frac{1}{R_I C_A}$$

ACH EXTRACTION: EXPERIMENT

COMMERCIALIZATION OPPORTUNITY

Building Market: >100,000 sq. ft. with BAS

Building Segment	Size (Million Sq ft)	Potential Savings (Million \$)**
M.U.S.H.*	6,222	622
Commercial	4,581	458

- * Municipalities, Universities, Schools, Hospitals
- ** Based on average energy costs. Many cities have higher costs

- Significant Market Opportunity
- Office buildings
 - Lower payback required

COMMERCIALIZATION

COMMERCIALIZATION CHALLENGES

Aligning value offered with decision authority

Competitive and segmented landscape

Accessing Markets

New Untested Technology

Start with Owner-Occupied Office Buildings

Differentiation

Low Cost, Software-Based

Low payback period

Full Solution

Upfront Analytics

Strategic Business Partnering
ESCO- MUSH market

Strategic Technical Partnering

Building-Scale Demonstrations

COMMERCIALIZATION STATUS

Boston University School of Management Institute for Technology Entrepreneurship & Commercialization

New Venture Competition Finalists

AUTOMATED TECHNIQUE OF MEASURING ROOM AIR CHANGE RATES IN HVAC SYSTEMS

U.S. Provisional Patent Application No.: 61/561,131 International Application No.: PCT/US2012/065786

SUMMARY

- Room thermal dynamics follows 2nd order response based on air-wall thermal coupling
- SI/software approach for measuring ACH
- Proof of concept experiments on BU buildings
- Future work
 - Refine SI extraction approach
 - Integration with BAS
 - Large-scale testing & implementation

